In any dimension a “ clamped plate ” with a uniform weight may change sign ∗
نویسندگان
چکیده
Positivity preserving properties have been conjectured for the bilaplace Dirichlet problem in many versions. In this note we show that in any dimension there exist bounded smooth domains Ω such that even the solution of ∆u = 1 in Ω with the homogeneous Dirichlet boundary conditions u = uν = 0 on ∂Ω is sign-changing. In two dimensions this corresponds to the Kirchhoff-Love model of a clamped plate with a uniform weight.
منابع مشابه
A Clamped Plate with a Uniform Weight May Change Sign
It is known that the Dirichlet bilaplace boundary value problem, which is used as a model for a clamped plate, is not sign preserving on general domains. It is also known that the corresponding first eigenfunction may change sign. In this note we will show that even a constant right hand side may result in a sign-changing solution.
متن کاملThermo-Elastic Analysis of Non-Uniform Functionally Graded Circular Plate Resting on a Gradient Elastic Foundation
Present paper is devoted to stress and deformation analyses of heated variable thickness functionally graded (FG) circular plate with clamped supported, embedded on a gradient elastic foundation and subjected to non-uniform transverse load. The plate is coupled by an elastic medium which is simulated as a Winkler- Pasternak foundation with gradient coefficients in the radial and circumferential...
متن کاملFree Vibration Analysis of Non-Uniform Circular Nanoplate
In this paper, axisymmetric free vibration analysis of a circular Nano-plate having variable thickness was studied. The variation in thickness of plate was considered as a linearly in radial direction. Nonlocal elasticity theory was utilized to take into account size-dependent effects. Ritz functions was utilized to obtain the frequency equations for simply supported and clamped boundary. To ve...
متن کاملVibration analysis of a Timoshenko non-uniform nanobeam based on nonlocal theory: An analytical solution
In this article free vibration of a Timoshenko nanobeam with variable cross-section is investigated using nonlocal elasticity theory within the scope of continuum mechanics. Small scale effects are modelled after Eringen’s nonlocal elasticity theory while the non-uniformity is presented by exponentially varying width through the beam length with constant thickness. Analytical solution is achiev...
متن کاملVibration analysis of a Timoshenko non-uniform nanobeam based on nonlocal theory: An analytical solution
In this article free vibration of a Timoshenko nanobeam with variable cross-section is investigated using nonlocal elasticity theory within the scope of continuum mechanics. Small scale effects are modelled after Eringen’s nonlocal elasticity theory while the non-uniformity is presented by exponentially varying width through the beam length with constant thickness. Analytical solution is achiev...
متن کامل